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Abstract

In this paper a two graded organization is considered in which depletion of manpower occurs due to its policy
decisions. Three mathematical models are constructed by assuming the loss of man-hours and the inter-decision
times form an order statistics. Mean and variance of time to recruitment are obtained using an univariate
recruitment policy based on shock model approach and the analytical results are numerically illustrated by
assuming different distributions for the thresholds. The influence of the nodal parameters on the system
characteristics is studied and relevant conclusions are presented.
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I.  Introduction

Exits of personnel which is in other words
known as wastage, is an important aspect in the study
of manpower planning. Many models have been
discussed using different kinds of wastages and also
different types of distributions for the loss of man-
hours, the threshold and the inter-decision times.
Such models could be seen in [1] and [2]. Expected
time to recruitment in a two graded system is
obtained under different conditions for several
models in [3],[4],[5],[6].[7].[8] and [9] according as
the inter-decision times are independent and
identically distributed exponential random variables
or exchangeable and constantly correlated
exponential random variables. Recently in [10] the
author has obtained system characteristic for a single
grade man-power system when the inter-decision
times form an order statistics. The present paper
extend the results of [10] for a two grade manpower
system when the loss of man-hours and the inter
decision times form an order statistics. The mean and
variance of the time to recruitment of the system
characteristic are obtained by taking the distribution
of loss of man-hours as first order (minimum) and k™
order (maximum) statistics respectively. This paper is
organized as follows: In sections 2, 3 and 4 models I,
I1 and 111 are described and analytical expressions for
mean and variance of the time to recruitment are
derived . Model I, Il and 111 differ from each other in
the following sense: While in model-1 transfer of
personnel between the two grades is permitted, in
model-11 this transfer is not permitted. In model-I11
the thresholds for the number of exits in the two
grades are combined in order to provide a better
allowable loss of manpower in the organization

compared to models | and Il. In section 5, the
analytical results are numerically illustrated and
relevant conclusions are given.

Il.  Model description and analysis for
Model-1

Consider an organization having two grades

in which decisions are taken at random epochs in

[0,00) and at every decision making epoch a random

number of persons quit the organization. There is an
associated loss of man-hour to the organization, if a
person quits and it is linear and cumulative. Let X; be
the loss of man-hours due to the i" decision epoch,

i=1,2,3...k. Let X;,1=123..K are independent

and identically distributed exponential random
variables with density function g(.) and mean

lc,c>0). . Let X, X 5, Xy, be the order

statistics selected from the sample X, X,,... X
with respective density functions
Oy (> Gxz) ()ee Oy (). Let U,i=123.k

are independent and identically distributed
exponential random variables with density function

f(). Let Uq),U 55U i be the
order statistics selected from the sample
U,,U,,..U, with respective density functions

oy s Fu) (e i (). Let T be a continuous

random variable denoting the time for recruitment in
the organization with probability density function

(distribution function) 1()(L()). Let
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I*(.),f*(.),fu*(l)(.)and fu*(k)(.) be the Laplace
I(')af(')ﬂfu(l)(')and fu(k)(')

respectively. Let Y, and Yg be independent random
variables denoting the threshold levels for the loss of
man-hours in grades A and B with parameters a, and
ag respectively (o,,05>0). In this model the threshold
Y for the loss of man-hours in the organization is
taken as max (Ya,Yg). The loss of manpower process
and the inter-decision time process are statistically

transform of

I1l.  Main results
The survival function of T is given by

P(T >t)=ivk(t) P(Zk:xi <Y)

k=0
=3V, [ p(y > %) g, (x)dx
k=0

0
Case 1:

independent. The univariate recruitment policy
employed in this paper is as follows: Recruitment is
done as and when the cumulative loss of man-hours
in the organization exceeds Y. Let V\(t) be the
probability that there are exactly k-decision epochs in
(0,t]. Since the number of decisions made in (0,t]
form a renewal process we note that V(t)= Fy(t) -
Fis1(t), where Fo(t)=1. Let E(T) and V(T) be the
mean and variance of time for  recruitment
respectively.

(1)

Y »and Yg follow exponential distribution with parameters a, and ag respectively. In this case it is shown

that
p(Y > x) = DV, (D] [ +e e —e ey, (x)dlx @)
k=0 0
From (1) and (2) we get
P >1) = [F®) - Feu 0] 05 (@) + 05 () - 95 (a + )] 3)
k=0
Since  L(t) =1—P(T >t) and I(t) =%(‘ t)) (4)
from (3) and (4) it is found that
IO =[1-g (@)Y f ()9 (@) +[1-g (@] fi (19 (@) " -
k=1 k=1
[1-9"(ay +ae)I) f(t)(g (@) +ag) ®)
k=1
Taking Laplace transform on both sides of (5) it is found that
(- L9 @] ®) [1-0'@)]f'®) -9’ +ap)]f o) ©
1-f (S)g (aA) 1-f (S)g (aB) 1-f (S)g (aA +aB)
The probability density function of r™ order statistics is given by
fun® =rke [FOT™ fOL-FOI ", r=123.k %
If f(t)qu(l)(t)
then f (S)=f,,(S) ®)
From (7) it is found that
fu =k fOL-f®)" )
Since by hypothesis f (t) = le ™ (10)

from (9) and (10) we get
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kA

u(l)( )= k/1+S (11)
It is known that
d(l’(s d2(1"(s
em=- S e =S and vy —ETh-ETY @2
Therefore from (6), (115) gnd (12) we get e
E(T)== [v +V, =V, 13)
2
E(TH) = +V; -V (14)
Where V, = ! V, = ! andV, = - ! 15)

1-9"(@)" " 1-9"(a)
If f()=f,g (1)
In this case " (S) = fu*(k)(s)
From (7) it is found that

1-9g (a,+ag)

fuo® =(FO) " F© (16)
From(10) , (16) and on simplification we get

. k1"
fu (8) = (17)

(S+A)S+24)..(s+kA)
Therefore from (6),(17) and (12) we get

>4

ET)= ”:l/l v, +V, -V, ] (18)
(51 o
E(T 2) = %g}é[(vf _V1)+ (\/22 _Vz )_ (\/32 _Vs )]+ nl/l}zé [Vl +V2 _Vs] (19)

In (18) & (19) V1,V, and V3 are given by (15).
The probability density function of n' order statistics is given by

O (%) =N1KG, [GOOT GO~ GO ", =12,3.k (20)
If 9(x)=0x1)(X)

then in(13),(14),(18) and (19) 9" (7) = 0, (7) forr=a,, oz and o, +

From (20) it is found that

0y () =k g(x) (1~ g(x)" (2D
Since by hypothesis g(X) = ce (22)
from (21) and (22) we get

. kc
gx(l)(r):m,r:aA,aB andaA+aB (23)

In (13),(14),(18) and (19) 9 (@), (atg) & 9" (e, + ) are given by (23) when s=1.

and V(T) = E(T*) - (E(T))*
If 9(})=gxqo(X)
theng () = g:(k)(r) forr=a,,a; and o, + oy
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From (20) it is found that

00 (0 =(G() " 9(x) (24)
From(22),(24) and on simplification we get

' k
Uy (7) = kic forr=a,,a;anda, +a, (25)

(c+7)2c+7)3C+7)......(KC+7)
In (13),(14),(18) and (19) g (@), 9 (at5) & (cx, + g ) are given by (25) when s=k and
V(T)=E(T*)~(E(T))*

Case 2:
Yaand Yg follow extended exponential distribution with scale parameters o and og respectively and

shape parameter 2. In this case it can be shown that
I £(0)=Fuu (1)

E(T)=%[2VI+ZV2 R\ Y .Y/ VA VAR VY (26)
E(T?)= %[zvf . Vi Vi, VRV VLIV (27)
whereV, = - ! Ve = - 2 Ve = - ! ,
1-9 Ca,+ag) 1-9 (a,+2a3) 1-9 Ca,+2ay)
V,_ *;and V, = ; (28)
1_g (zaA) 1_9 (zaB)
when n=1,in (26)&(27) V1,V2,V3,V4,V5, Ve, V7 and Vg are given by (15),(28) and (23).
when n=Kk,in (26)&(27) V1,V,,V3,V4, Vs, Ve, V7 and Vg are given by (15),(28) and(25).
If f(t)zfu(k)(t)
Proceeding as in case(i) it can be found that
k
>4
E(T)= “=1/1 [V, + 2V, -4V, + 2V, + 2V, -V, -V, -V, ] (29)

2 2 2 2 2 2 2 2 2 2 « ’ 1
E(T ):F[zv1 N VE.VE I VL VLRV RYL IR ](Z%j —
n=1

[2V, + 2V, — 4V, + 2V, + 2V, —V, -V, -V, {(Zk: %] —(Ek: %zn (30)

when n=1,in (26)&(27) V1,V,,V3,V4,V5, Ve, V7 and Vg are given by (15),(28) and (23).
when n=kin (26) (27) V1,V,,V3,V4,V5,Vs,V7 and Vg are given by (15),(28) and (25).

Case 3:
Y follows extended exponential distribution with scale parameters o, and shape parameter 2 and Yg

follows exponential distribution with parameter og.
If £(t)=f,)(t)
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Proceeding as in case 1 it can be shown that

1
E(T) =22V, +V, +V, -2V, -V, ] 3D
E(T?)= ;[zvf TAVESRVE VARV (32)

when n=1, in (31) & (32) V1,V,,V3,V, and V; are given by (15),(28) and (23).

when n=k, in (31) & (32) V1,V,,V3,V, and V5 are given by (15),(28) and (25).

If () =fuu(t)
Proceeding as in case (i) it can be shown that
k

25

ET)= "=1/1 [2V, +V, -2V, +V, -V, ] (33)
2 2 2 2 2 2 2 & i
ECT ):?[Zvl +V2 _2\/3 +V4 _V7] Z% -

1 K 2
?[2v1 +V, -2V, +V, wj{(; %j —2 % 2] (34)

when n=1, in (33) & (34) V1,V,,V3,V, and V5 are given by (15),(28) and (23).

when n=k, in (33) & (34) V1,V,,V3,V, and V5 are given by (15),(28) and (25).
Case 4:
The distributions of Y 5 has SCBZ property with parameters oa,ll; & Wy, and the distribution of Yg has

SCBZ property with parameters og,Ms & M. In this case it can be shown that
If f(t):fu(l)(t)

1
E(T) = z[plvg + p2V10 - P p2V13 - p1q2V14 - P q1V15 - q1q2V16 + q1V11 + q2V12] (35)
2
E(T 2) = ?[plvsaz + pZVl(z) - pl pZVliz% - p1Q2V1i - pquvlé - chqzvlé + Chvli + qzvli] (36)
where
9~ * L sV = * 2 ’V11: 1. ’V12:+
1-9 (ap+ 1) 1-9 (ag +u3) 1-9 (14,) 1-9 (u,)
1 1 1

14 15

lgzl_g*(aA""aB"‘/Jl‘*'ﬂs), _1_9*(05A+/u1+/u4)’ _1_9*(a5+ﬂ1+ﬂ3)

and V.. = 1
10"y + )

when n=1,in(35)&(36)Vy,V10,V11,V12,V13,V14,Visand Vg are given by (37) and (23).

37)

when n=Kk,in(35)&(36)Ve,V10,V11,V12,V13,V14,Visand Vg are given by (37) and (25).

IF F(1)=Fy0(0)
Proceeding as in case (i) it can be shown that
K

2H

E(T) = n=ll [prQ + p2V10 -P p2V13 - p1Q2V14 - p2q1V15 _Q1q2V16 + Q1V11 + q2V12] (38)
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and

2 AL
E(T 2) = ?[plv; + p2V1(2> - P pzvlg - p1q2V1421 - p2Q1V1§] [Z%j +
-1
1
[qlvli + QZVé - qquVlé:I - ?[qlvll +0,Vi, —0,0,Vs6 {(

1
'?[leg + p2M1o -P ples - p1Q2M14 - pzchMls{(

>

n=1

n=.

2

y-
k%j nk %} (39)

A

SV,

n=1

when n=1,in(35)&(36)Vg,V10,V11,V12,V13,V14,Vis and Vg are given by (37) and (23).

when n=Kk,in(35)&(36)Ve,V10,V11,V12,V13,V14,Visand Vg are given by (37) and (25).

IV.  Model description and analysis for Model-11

For this model Y = min(Y,,Yy) . All the other assumptions and notations are
as in model-1. Then the values of E(T)&E(T *)whenr =1andr =k are givenby

case 1:
If f(t):fu(l)(t)
Proceeding as in case 1 it can be shown that

EM) =2 V.]
et -5 ]

when n=1,in (40) & (41) V3 is given by (15) and (23).
when n=k,in (40) & (41) V3 is given by (15) and (25).

If f(t)zfu(k)(t)
Proceeding as in case 1 it can be shown that
k

2h
E(T) =

V.1

E(T%)=

when n=k,in (42) & (43) V3 is given by (15) and (25).

and V(T)=E(T*)—-(E(T))’

Case 2:

If f(t)qu(l)(t)

Proceeding as in case 1 it can be shown that

EM = [4V+V —2V, -2V, |

E(T?) = [4v V-2 -]

@Ml] (Zkl:%Jf_ Zkl:%z v

when n=1,in (42) & (43) V3 is given by (15) and (23).

when n=1,in (44) & (45) V3,V4,Vs and Vg are given by (15),(28) and (23).
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when n=k,in (44) & (45) V3,V4,Vs and Vg are given by (15),(28) and (25).
If f(t):fu(k)(t)
Proceeding as in case 1 it can be shown that

[

Z%

E(T) =2 —[4V, +V, -2V, - 2V] (46)

E(T )—32[4v32 +v62—2v42—2v52](zk: %J -

n=1

%[4v3 +V, =2V, -2V, ] {(i%jz _Z%ZJ (47)

when n=1,in (46) & (47) V3,V4,Vs and Vg are given by (15),(28) and (23).

when n=Kk,in (46) & (47) V3,V,4,Vs and V, are given by (15),(28) and (25).

Case 3:
If f(t):fu(l)(t)
Proceeding as in case 1 it can be shown that

EM = [2v -V,] (48)

ET?)=—2=Jovz-v?] (49)

2/12
when n=1,in (48) & (49) V3 and V, are given by (15),(28) and (23).

when n=k,in (48) & (49) Vs and V, are given by (15),(28) and (25).
I £(t)=Fy0(t)
Proceeding as in case 1 it can be shown that

Kk

Z%

EM)="2—[2v,-V,] (50)

o Sfes-afgn (i) g5

when n=1,in (50) & (51) Vs and V, are given by (15),(28) and (23).

when n=k;in (50) & (51) V3 and V, are given by (15),(28) and (25).
and V(T)=E(T?)-(E(T))?

Case 4:
If £(t)=f,)(t)
Proceeding asin case 1 it can be shown that

E(T) ——[pl P Vis + PV + Po0Vis + Ch0,Vye ] (52)

(T )=—=5 [pl p,M 3 + p1q2|\/|14 + p2q1M15 +q1q2M16 (53)

2&2
when n=1,in (52) & (53) V13,V14,V15 and Vg are given by (37) and (23).

when n=k,in (52) & (53) V13,V14,V15 and V¢ are given by (37) and (25).
If f(t)=f,1)(t)
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Proceeding as in case 1 it can be shown that
k

2 H

E(T)= n:li [p1 P2Vis + PidoVi + Po0LVis + qlqzvlﬁ] 4
2 2 . 2 k 3
ET")= ?[pl P, Viz + PiA,Vy, + Po0Vis +0,0,V56 ](Z%] B (Z%j _Z%Z
n=1 n=1 n=1
1
el LAVRCAV RS XA RS (35)

when n=1,in (54) & (55) V13,V14,V1i5 and V¢ are given by (37) and (23).
when n=k,in (54) & (55) V13,V14,V15 and V¢ are given by (37) and (25).

V.  Model description and analysis for Model-I11

For this model Y =Y, + Y . All the other assumptions and notations are as in model-1. Then the values

of E(T)&E(T?) when n=1and n =k are givenby
case 1:

If f(t):fu(k)(t)

Proceeding as in case 1 it can be shown that

E(r)i[( = JVZ—[ = ]V} (56)

A\ a,—ag o, =0

E(TZ) =£2|:( aA )VZZ _( aB JV:LZ :| (57)
Al\lay—ay o, — 0

when n=1,in (56) & (57) V; and V, are given by (15) and (23).

when n=k,in (56) & (57) V, and V, are given by (15) and (25).
I f(£)=Fugo(t)
Proceeding as in case 1 it can be shown that

k

>
E(T)=“%H “a jvz—( e ]V} (58)
A o, —ag o, —Qg

BN o (w1 ()R
o o fcncye) B

s i

{ D jvz—( %s jvl} (59)
ap— Qg ap—Qp

when n=1,in (58) & (59) V; and V, are given by (15) and (23).

when n=k;in (58) & (59) V; and V, are given by (15) and (25).

Case 2:
If f(t)=fuw)(t)
Proceeding as in case 1 it can be shown that
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dag B dag 4o, B 4o,
E(M)= ki{[[aA—ZaBJ [aA—aB j}/l+((aA—aB] 2aA )V :l
i 20, 3 o, N a, B 2aA (60)
KA\ 20, — a—ag )’ a,—a, ZaB
dag B dag 5 4a 4o,
BT = k2A? l:([aA—ZaBJ (aA—aBD\/l —{(aA—aBj (ZOCA—%D\/ }
2 205 | [ g 2, a, 20, (61)
k2 |\ 2a, — x a—ay )|’ aA—aB aA—ZaB

when n=1,in (60) & (61) V1,V V7 and Vg are given by (15),(28) and (23).

when n=k,in (60) & (61) V1,V,,V; and Vg are given by (15),(28) and (25).
If f(t):fu(k)(t)

Proceeding as in case 1 it can be shown that
k

o5 e e

D G )]
-1 N (e )
e e e
(“Z:%]ﬂ; et ) ]
M) o (e e

when n=1,in (62) & (63) V1,V,,V7 and Vg are given by (15),(28) and (23).

when n=k;in (62) & (63) V1,V,,V; and Vg are given by (15),(28) and (25).
Case 3:

If f(t)zfu(k)(t)
Proceeding as in case 1 it can be shown that
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1 ag B 2 20, 3 20,
E(T)_H{(ZaA—aB)% (aA—aB}/lJ{(aA—aBJ (ZaA—aBJ}/z} (&)
2 2 20, | [ 2a, 2 oy 2 [ 204 2
()= k222 K(aA—aBJ (ZOCA—O(B j}/z +[2aA—aB }/7 (aA—aB }/l } (©5)

when n=1,in (64) & (65) V1,V,,V; and Vg are given by (15),(28) and (23).

when n=k,in (64) & (65) V1,V,,V;and Vg are given by (15),(28) and (25).
If () =fuu(t)
Proceeding as in case 1 it can be shown that

k

Z%_ 2a 2a a 2a
M= 72 ((aA —aBj_(ZaA—aB J)VZ J{ZaA -0, jM7 _(aA -y }/1} (66)

and

o e e
%Maf il;s J_(ZaioiAaB DVZ +[2af{5 o, }/7 _(affs% }/1}[(2 %j —Zkl) %ZJ(BY)

when n=1,in (66) & (67) V1,V V7 and Vg are given by (15),(28) and (23).

when n=k,in (66) & (67) V1,V,,V; and Vg are given by (15),(28) and (25).
Case 4:

If f(t):fu(l)(t)
Proceeding as in case 1 it can be shown that

E(T) _i{[ Py pz(aA +/11) n 0, P4, jvlo +[ plqz(aA +ﬂ1)+ 0,0,44, JV12:|

B R A Op+ iy =My Hy— My
_i[ plpz(as"'ﬂs) + P, 44 JV9+[p2Q1(0‘B+,U3)+ 0,944 Jvll (68)
KA\ ap—ag+pm—py ap+pm—py Hp = Hy— Qg My —
and

E(T2)= 222{( PP, (s +44) S Y )Vlg+[p1q2(aA+ﬂ1)+ GiGa44, ]Vé}
KA |\ ap—ag+m—ps =g — i Ot — My Hy— My

_ 222 {[ Py pz(aB +:U3) " P24 ngz +( pqu(as +/”3)+ 0.9244 ]Vﬁ} (69)
KA\ an—ag+m—ps an+im—p, Hy—Hy— Qg Hy— Hy

when n=1,in (68) & (69) V,,V14,V11 and Vy, are given by (28) and (23).
when n=k,in (68) & (69) Vg,V10,V1: and Vi, are given by (28) and (25).

If f(t):fu(k)(t)
Proceeding as in case 1 it can be shown that
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ET)= nz;%{[ Py pZ(aA +/'ll) " 0y P24 Jvlo +( plqz(aA +ﬂ1)+ 0,924 jV12:|
Op—Qg+ =My —H Opt L — My Ho—Hy

~ nz_l:% K P, pz(aB +,L13) N plqzmﬂ ng _{ pqu(aB +,U3)+ qlcb/:; ]V11:| (70)
4

A Op—Cgt =My Opt+ [ — Hy —H3—Qg [y~
and
E(T? )_ p1 P, (n +44) S Y Jvlg +( plqz(aA+ﬂ1)+ 09244, jvé
Qg T T Hy My Hs Opt =My Hy=Hy

TOg Tt Ty Opt - Hy —Hs = Qg Hy— Hy

Zl/n {

plpz 2 +ﬂ3) 4 P.9, 4, jvgz _'_( p2Q1(aB +,us) 0,0,4, Jvl
Hy

|

2
n= % JK Py p2(aA +/u1) n Q. P44, Jvlo +( p1Q2(aA +,u1)+ 0,9, 4, jV12j|
My —Og — Hs

Op—CQpg + [y — Oty —Hy My = Hy

o
3
M

k

(Z%j Z%J[(Q

plpz(as"'ﬂs) + P.9, 4, ng +
AT Qg T~y Oyt — Uy

[(1%J Zy JH Pt (e +415) | Gyt JVH} (79)

Hy —Hy— Qg Hy— Hy

when n=1,in (70) & (71) V4,V14,V1; and Vy, are given by (28) and (23).
when n=k;in (70) & (71) Vo,V10,V11 and Vi, are given by (28) and (25).

and V(T)=E(T*)-(E(T))

VI.  Numerical illustration

The influence of nodal parameters on the performance measures namely mean and variance of the time to
recruitment is studied numerically. In the following tables these performance measures are calculated by varying
the parameter ‘p’ at a time and keeping the other parameters fixed as aA=0.1, aB=0.3,A=0.5, u1=0.4, u2=0.8,
u3=0.6 , u4=0.7 .
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Table 1: Effect of ‘c’ and k> on E(T) for Model-I

c 1 15 2 1 1 1
K 3 3 3 4 5 6
n=1 | 223333 | 33.1667 44 22.1667 | 22.0667 22
A " e 44080 | 63780 | 83474 | 2.9331 2.1549 1.6829
S | EM
n=1 | 122.8333 | 182.41 242 184.7222 | 251.9278 | 3234
| nek | 244200 | 50788 | 459108 | 244428 | 246020 | 247386
n=1 | 31.8810 | 47.4881 | 63.0952 | 317143 | 316143 | 31.5476
3 | EM " ek | s14wr | soms | 1e100 | 4077 2.9902 2.3315
S r=k | n=1 | 175.3452 | 261.1845 | 347.0238 | 264.2857 | 360.9298 | 463.75
n=k | 337902 | 49.3971 | 65.0042 | 339811 | 341387 | 34.2731
n=1 | 31.3333 | 46.6667 62 31.1667 | 31.0667 31
i " ek | sose | ssmo | 16108 | 4012 2.9423 2.2943
g2 |em
n=1 | 172.3333 | 256.6667 341 259.7222 | 354.6778 | 455.7000
" ek | seoa0 | ass7sa | ssooso | saasss | sssews | samoe
n=1 | 64309 | 93130 | 12.1951 | 6.2642 6.1642 6.0976
> U] ik | 1soas | 2oass | 2sees | woesw 0.7680 0.6066
s |ED (|t | 33700 | 512216 | 67.0733 | 522020 70.3751 | g9 6343
=
n=k | 83840 | 11.2440 | 141171 | 8.5932 8.7677 8.9171
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Table 2: Effect of ‘c’ and ‘k” on E(T) for Model-II

1 1.5 2 1 1 1
3 3 3 4 5 6
n=1 5.6667 8.1667 10.6667 55 54 5.3333
r=1
; n=k 1.4041 1.8505 2.3001 0.9569 0.7170 0.5693
S | EM
n=1 31.1667 44,9167 58.6667 45.8333 61.65 78.40
r=k
n=k 7.7227 10.1776 12.6536 7.9739 8.1853 8.3682
n=1 9.4524 13.8452 18.2381 9.2857 9.1857 9.1190
r=1
E E(T) n=k 2.0694 2.8662 3.6641 1.3897 1.0288 0.8086
3]
© r=1 n=1 51.9881 76.1488 100.3095 77.3810 104.8702 134.05
n=k 11.3820 15.7642 20.1528 11.5808 11.7454 11.8864
n=1 6.6667 9.6667 12.6667 6.5 6.4 6.3333
r=1
; n=k 1.5819 2.1190 2.6610 1.0715 0.9996 0.6327
8 E(T)
n=1 36.6667 53.1667 69.6667 54.1667 73.0667 93.1
r=k
n=k 8.6910 11.6546 14.6355 8.9291 9.1287 9.3012
n=1 2.5770 3.5322 4.4874 2.4104 2.3104 2.2437
r=1
: n=k 0.8733 1.0311 1.1957 0.6149 0.4728 0.3834
& | EM 26.3767
n=1 14.1737 19.4272 24.6807 20.0864 ) 32.9824
r=k
n=k 4.8031 5.6710 6.5765 5.1244 5.3976 5.6365
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Table 3: Effect of ‘c’ and ‘k’ on E(T) for Model-I11

c 1 15 2 1 1 1
k 3 3 3 4 5 6
=1 273333 40.6667 54 27.1667 27.0667 pi
% i = 53174 77413 102194 35325 25924 20226
- E(T) =1 150.3333 223.6667 207 226.3839 300.0111 306.900
o = 202450 425773 562068 204377 20 5963 207320
=1 40.6667 60.6667 80.6667 40.5 404 40.3333
E E(T) - =k 7.7411 113775 15.0137 3.1320 3.7598 2920
N =1 | =l 223 6667 333 6667 443 6667 337.50 4612333 592.900
= 42,5758 62.5761 82.5753 42.7666 42,9246 43.0501
=1 373333 55 6667 74 371667 370667 37

- =1
5 n=k 71350 10 4684 13 8016 47320 34678 27024
N ED) =1 203.3333 306.1667 407 300.7222 423.1778 543.900
i =k 302426 575761 75 9089 304333 39,5912 307258
=1 8.3413 12.1786 16.0158 8.1746 8.0746 8.0070
E - = 18681 25633 32603 12570 09322 07336
N E(T) =1 458770 66.9821 88.0873 63.1217 . 117.717

=k
= 102747 14.0005 17.9314 10.4754 10.6425 10.7847

Findings

From the above tables it is found that

1. When the probability density function of inter decision time is same as the probability density
function of first order statistics, as ‘k’ increases the mean time to recruitment decreases for the first and
kth order statistics for the loss of manhours but it is increases when the probability density function of
inter decision time is same as the kth order statistics.

2. When the probability density function of inter decision time is same as the probability density
function of first order statistics or the kth order statistics, as ‘c’ increases the mean time to recruitment
increases for the first and kth order statistics for the loss of manhours .

Conclusion
Since the time to recruitment is more elongated in model-111 than the first two models, model-I11 is
preferable from the organization point of view.
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